The Effects of Preconception Antioxidant Nutrients on Sperm Quality in Patients with Male Factor Infertility: **A Prospective Clinical Study**

Background

- Male factor infertility is estimated to account for 30 to **50% of clinical infertility cases.**¹
- Vitamins, minerals, and antioxidants are critical for a healthy pregnancy, but less is known about the impact of these nutrients on sperm quality.
- Intervention: Preconception nutrient regimen composed of bioavailable minerals, vitamins, and antioxidants to assess impact on sperm quality (Table 1).
- Individual nutrients were selected based on retrospective data showing a positive impact on sperm quality, but have not been clinically tested in combination.

Hypothesis & Objective

Hypothesis: The evidence-based preconception nutrient combination will improve sperm motility and morphology over a 90-day course.

Objective: To assess repeat semen analysis (SA) results after a 90-day course of preconception antioxidant nutrients in patients with male factor infertility.

Agent	Dose	Proposed Function		
CoQ10	600 mg	•Free radical scavenger •Improve cell energy production ²		
L-Carnitine	500 mg	 Free radical scavenger³ Anti-oxidant activity⁴ Increases sperm motility via fatty acid metabolism⁴ 		
NAC (N-Acetyl Cysteine)	500 mg	 Antioxidant Free radical scavenger⁵ Intracellular detoxification⁶ Improves sperm quality and DNA damage⁶ 		
Folate	1 mg	•Spermatogenesis •Free radical scavenger ⁷		
Zinc (Zinc Citrate)	50 mg	 Spermatogenesis Membrane stabilization Antioxidant activity⁷ 		
L-Arginine	500 mg	•Amino acid with antioxidant properties •Increases blood flow ⁸		
Choline (Choline Bitartrate)	100 mg	•Regulates sperm membrane structure and fluidity •Spermatozoa maturation and fertilization potential ⁹		
Trans-Resveratrol	60 mg	•Decrease cell exposure to carcinogens •Antioxidative activity ¹⁰ •Reduces DNA damage ¹¹		

- Study Design: Prospective experimental single-arm study. This was an IRB approved study (Veritas 3048-13224-1).
- Recruitment: Patients presenting to a fertility clinic that were identified with male factor infertility based on having at least one abnormal SA parameter
 - Concentration < 15 million/ml, progressive motility < 32%, or
 - morphology < 4% based on strict criteria
- Sample Size: First 23 patients to complete the intervention and follow-up SA
- **Monitoring:** Patients were contacted monthly via email for the 90-day study duration
 - Self-reported side effects and compliance was recorded
- Data Collection & Analysis: Both baseline and follow-up SA were evaluated at the same andrology lab and compared.
 - Statistical significance and effect sizes were assessed using paired samples *t*-tests and Cohen's *d*
 - Average time between SA tests was 157.2±39.6 days

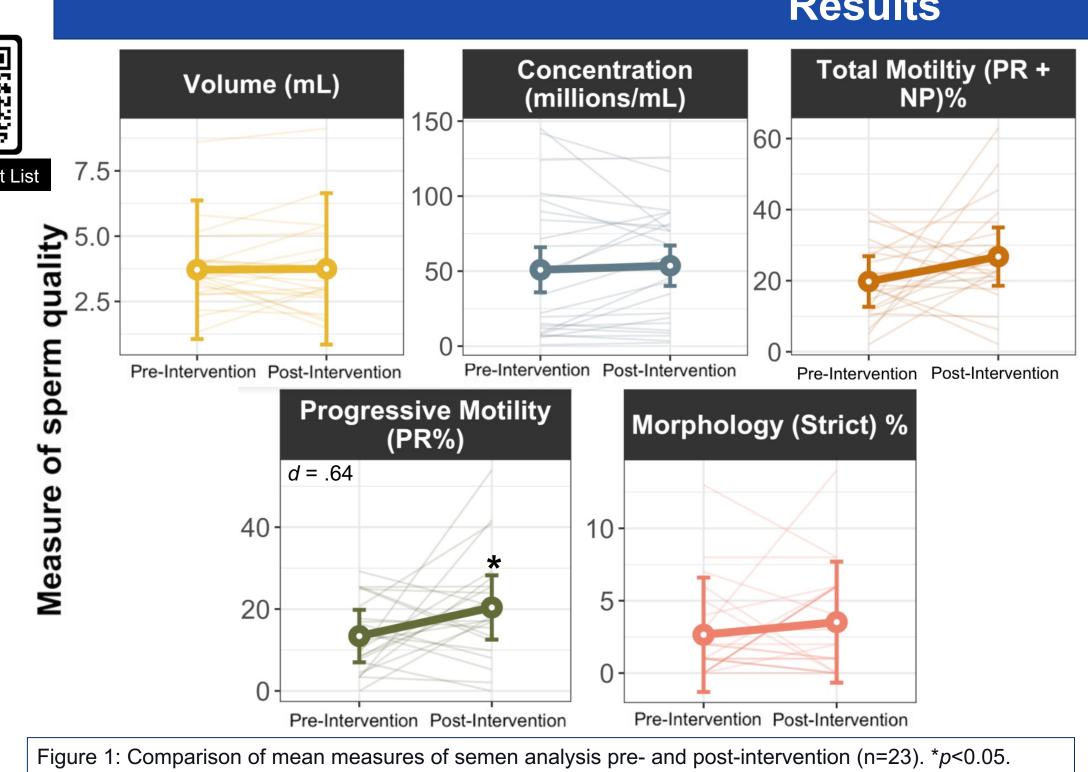


Table 1: Key ingredients in the preconception antioxidant nutrient regimen.

Kristen Di Stefano¹, Jennifer Fitzgerald², Tracy Malone², Dan Nayot³

¹The University of Toronto, Toronto, Ontario, ²Conceive Health, Toronto, Ontario, ³The Reproductive Care Centre, Mississauga, Ontario

Methods

 Mild side effects included bright yellow urine (26.1%) and nausea (13%) if taken without food

Inclusion	Exclusio
Criteria	Criteria
 Male Ages 18 to 45 Patients struggling with infertility A recent abnormal SA parameter 	 Males your than 18 yea old, or olde than 45 yea old Active ciga smokers Diagnosed a varicocele Concurrent of other preconcept nutrient regimens

Results

Semen Analysis Results - Baseline vs Post-Intervention

Semen Analysis Measure	Baseline SA	Post- Intervention SA	% Change	<i>p</i> - value
Volume (mL)	3.71+/-1.5	3.75+/-1.8	0.877%	.945
Concentration (millions/mL)	50.9+/- 47.2	53.6+/-37.8	5.3%	.598
Total Motility (%)	19.8+/- 10.6	26.8+/-14.0	35.4%	.086
Progressive Motility (%)	13.4+/-8.6	20.4+/-12.8	52.2%	.046
Strict Morphology (%)	2.7+/-3.3	3.5+/-3.6	29.6%	.327

- nger ars ars
- arette
- with ele nt use
- otion

Limitations

- Single arm study Lack of control group
- Self-reported compliance
- Sample size limited
- Selection bias
- Unable to control for confounding factors

Conclusion & Future Directions

- An interim analysis of a 90-day course of preconception antioxidant nutrients showed a significant improvement in progressive motility and a positive trend in total motility in patients with male factor infertility.
- A statistically significant increase in progressive motility by 52.2% (p = .046), and a marginally significant increase in total motility by 35.4% (*p* = .086).
- No significant changes noted in volume, concentration, or morphology.
- Taking additional supplements to improve sperm quality may represent a low-level intervention to support patients with male factor infertility.
- The study will be extended to include 50 participants; further sperm quality parameters such as DNA fragmentation will be investigated in future participants.

References

Eisenberg ML, Esteves SC, Lamb DJ, et al. Male infertility. Nat Rev Dis Primers. 2023;9(1):49. Published 2023 Sep 14. doi:10.1038/s41572-023-00459-w Ben-Meir A, Burstein E, Borrego-Alvarez A, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887-895. doi:10.1111/acel.12368 Khaw SC, Wong ZZ, Anderson R, Martins da Silva S. I-carnitine and I-acetylcarnitine supplementation for idiopathic male infertility. Reprod Fertil. 2020;1(1):67-81. Published 2020 Dec 23. doi:10.1530/RAF-20-0037 Aliabadi E, Soleimani Mehranjani M, Borzoei Z, Talaei-Khozani T, Mirkhani H, Tabesh H. Effects of L-carnitine and L-acetyl-carnitine on testicular sperm motility and chromatin quality. Iran J Reprod Med. 2012;10(2):77-82. Jannatifar R, Parivar K, Roodbari NH, Nasr-Esfahani MH. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod Biol Endocrinol. 2019;17(1):24. Published 2019 Feb 16. doi:10.1186/s12958-019-0468-9 Jannatifar R. Parivar K. Havati Roodbari N. Nasr-Esfahani MH. The Effect of N-Acetyl-Cysteine on NRF2 Antioxidant Gene Expression in Asthenoteratozoospermia Men: A Clinical Trial Study. Int J Fertil Steril. 2020;14(3):171-175. doi:10.22074/ijfs.2020.44411 Schisterman EF, Sjaarda LA, Clemons T, et al. Effect of Folic Acid and Zinc Supplementation in Men on Semen Quality and Live Birth Among Couples Undergoing Infertility Treatment: A Randomized Clinical Trial [published correction appears in JAMA. 2020 Mar 24;323(12):1194]. JAMA. 2020;323(1):35-48. doi:10.1001/jama.2019.18714 Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. Adv Exp Med Biol. 2021;1332:167-187. doi:10.1007/978-3-030-74180-8 10 Lazaros L, Xita N, Hatzi E, et al. Phosphatidylethanolamine N-methyltransferase and choline dehydrogenase gene polymorphisms are associated with human sperm concentration. Asian J Androl. 2012;14(5):778-783. doi:10.1038/aja.2011.125 Mongioì LM, Perelli S, Condorelli RA, et al. The Role of Resveratrol in Human Male Fertility. Molecules. 2021;26(9):2495. Published 2021 Apr 24. doi:10.3390/molecules26092495 Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol Ther. 11 2018;188:140-154. doi:10.1016/j.pharmthera.2018.03.004 Funding & Conflicts of Interest

This study was funded by The Bird&Be Co.